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ABSTRACT

This document describes the support provided by the Goddard Space Flight

Center (GSFC) Attitude Determination and Control Section and its contractor

Computer Sciences Corporation during the 2 weeks immediately following the

launch of the Communications Technology Satellite (CTS) on January 17, 1976.

ResLLIts concerning attitude sensor performance, attitude and bias determination,

and attitude control system performance are presented. Included also are brief

descriptions of the spinning attitude sensors and attitude control system and

their final alig-nment data. A detailed discussion of attitude sensors, attitude

control system, and attitude determination and control procedures is Eiven in

Reference i. The reader is assume d to be familiar with the contents of that

document.
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SECTION 1 - OVERVIEW

This section reviews the major events of the Communications Technology

Satellite(CTS) mission which occurred during the time from lift-offto station

acquisition, described from the perspective of the Attitude Determination and

Control Section at Goddard Space Flight Center (GSFC).

CTS was launched from Cape Kennedy at 23 hours, 27 minutes, 54 seconds

Greenwich mean time (G_IT) on January 17, 1976. Injection into the transfer

orbit occurred at 23 hours, 52 minutes on January 17, and a satisfactory trans-

fer orbit was achieved with the following parameters:

Parameter

Semimajor axis

Eccentricity

Inclination

Right ascension

of ascending mode

Argument of perigee

Mean anomaly

Epoch date (GMT)

Epoch time

Spin axis right ascension

Spin axis declination

Description

24579. i kilometers

0.733086

27. 2013 degrees

288. 005 deg-rees

178.824 deg-rees

0.439642 degrees

January 17, 1976

23 hours, 52 minutes, 0 seconds

197.52 deg-rees

-22.53 degrees

The perigee height was 2.38 kilometers below the nominal value but was within

the expected dispersion and was therefore not corrected. A chronology of the

main attitude support events from lift-off to station acquisition is as follows:

Date Time (GMT)

Event

Switch to Sun sensor-W

Switch back to Sun sensor-E

(YY:iVIM:DD} (HH:NIM)

76/01/18 02:20

76/01/18 02:27

i-I



Event

First attempt to reorient to

apogee motor firing attitude

(A_FA) I

Reorientation from injection

attitude (INJA) to system

verification attitude (SVA)

Reorientation from SVA to

AMFA

Trim for A_,IFA

Apogee motor firing

Reorientation from AMFA to

drift orbit normal attitude

(DONA)

Date Time (GMT)

(_:MM:DD_ (HH:MM)

76/01/18 15:11

76/01/19 03:28

76/01/19 23:08

76/01/20 08:45

76/01/20 20:41

76/01/20 22:40

During the interval from January 20 to January 29, attitude was determined on

a daily basis in support of station acquisition orbit maneuvers. On January 30

and 31, the despin maneuver from 60 revolutions per minute (rpm) to i. 5 rpm

was monitored through the attitude support system at GSFC.

iAt this time when latch valve i (LVI in Fig-ure 2-1) was opened, pressure of

the west tank fell to zero. Further attempts at reorientation were postponed

until the problem was resolved.

1-2



SECTION 2 - ATTITUDE SENSORS AND CONTROL SYSTEM

v
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2.1 ATTITUDE SENSORS

The CTS is configared with the following attitude sensors:

• Two spinning Sun sensors (SSS-E, SSS-\V)

• Two spinning Earth sensors (SES-E, SES-W)

• Five nonspinning Sun sensors

• Two nonspinning Earth sensors

The four "spinning" sensors were used for attitudedetermination during the

phases of the mission supported by the attitude support system at GSFC, i.e.,

during the transfer and drift orbits in which the spacecraft was spinning at

80 rpm. The seven "nonspinning" sensors are used by the closed loop attitude

control system which was activated after the spacecraft had been despun. The

data from the nonspinning Sun sensors was available during the transfer and drift

orbit phases and could have been used in case of failure of spinning Sun sensors.

A detailed description of the attitude sensors and onboard processing and telem-

etering of spinning sensor data is given in Reference i.

2. I.1 Final Ali_o-nmentData of the Spinning Attitude Sensors
J

The numerical data on the spinning attitude sensors and telemetry system is

given in Reference I. The final prelaunch measured alignment values of the

spinning attitude sensor's azimuth and elevation are as follows:

Parameter

Azimuth angle of spinning Sun and Earth

sensor line of sight from spacecraft geometric

x- axis:

SSS-E

SSS-W

SES-E

SES-W

Value

(de%-rees)

0. 234

180. 204

0. 246

180. 148

2-1
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Parameter

Angle of spinning Sun and Earth sensor

line of sight from spacecraft spin axis:

SSS-E

SSS-W

SES-E

SES-W

2.1.2 SES Leading Edge Output Anomaly

Value

(degrees)

89.966

89.929

84.964

95.002

During the spacecraft prelaunch tests, it was found that the SES-IV produced a

leading edge output even when the Earth stimulus was absent (Reference 2).

Detailed testing analysis indicated that when the sensor is scanning the Earth,

both leading and trailing edge pulses will occur, resulting in stable time inter-

vals. When the sensor is scanning only space, the trailing edge Earth interval

will be zero, and the leading edge Earth interval will be either zero or approxi-

mately equal to the Sun pulse interval, depending on the bias state in the leading

edge thresholding circuitry. This anomalous behavior was observed only for

the SES-W during tests. However, after launch both Earth sensors were ob-

served to g-ire spurious leading edge output when they were not scanning the

Earth. These spurious data were rejected by manually editing the raw telem-

etry data. When the Earth sensors were scanning the Earth, they performed

nominally.

2. i. 3 Encoder Clock Rate Variations

During the spacecraft prelaunch tests, it was found that the encoder clock rate

varies with temperature from nominal (15,360 hertz) to 70 hertz low, i.e., to

14,270 hertz (References 3 and 4). The temperature of the spacecraft in spin-

ning phase was expected to be near the middle of the range (25 degrees Centi-

grade to 30 deg-rees Centigrade). Therefore, it was recommended that initially

a clock rate of 15,325 hertz be used. For greater accuracy during the mission,
.........................

the encoder clock rate was measured at Spaceflight Tracking and Data Network

2-2



(STDN) stations at intervals and manually changed in the attitudesupport system.

The encoder clock rate during the spin-stabilized period of the mission varied

between 15,330 hertz and 15,303 hertz. The only significanteffectdue to error

in the encoder clock rate will be in the observed spin rate of the spacecraft.

The error in the computed rotation angles will be generally negli_a-iblebecause

in the computation of rotation angle from crossing interval, in the main term,

the encoder clock rate occurs in both the numerator and the denominator. Only

the portion of rotation angle to be attributed to fixed electronic time delay

(7.7 milliseconds) is affected by errors in the encoder clock rate.

2.2 ATTITUDE CONTROL SYSTEM

A schematic diagram of the spacecraft's reaction control system (RCS) is

shown in Fi_ure 2-1. The RCS contains two "high-thrust" en_oines (HTEs) which

were used for attitude and orbit maneuvers during the portions of the mission

supported by GSFC. The RCS also includes 16 "low-thrust" engines (LTEs)

which were employed after GSFC's control of the mission had terminated. Dur-

ing the portions of the mission supported by GSFC, LTEs could be used to change

the spin rate of the spacecraft if the spin rate got outside the nominal 50-rpm-

to-75-rpm range, and LTEs P2' P4' E, and W were available as backups for

HTEs.

Of the two HTEs, called the axial high-thrust engine (Ax HTE) and the radial

high-thrust engine (Ra HTE), only the A_x HTE was employed by the Attitude

Control Support System (ACSS). For attitude reorientations the Ax HTE was

fired in a pulsed mode, i.e., one pulse was generated in each spin revolution

of the spacecraft. The LTEs were not used during the portions of the mission

supported by GSFC. Detailed description of the RCS is given in Reference i.

2-3
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2.2. i High-Thrust Engine Performance and Support

During a pulsed mode firingof the active HTE, one pulse is generated in each

spin revolution of the spacecraft.

Each pulse is initiatedautomatically, by the onboard electronics equipment, at

a selected time delay (td) after the Sun sighting reference pulse is generated

by the onboard spinning Sun sensor system. The same td value is used for

all pulses in any single train. This value is determined by the ACSS and trans-

mitted to the spacecraft.

The nominal width of the electronic firing signal which initiatesand terminates

each pulse is 0.134 second. The number of pulses (n) required to be fired for a

g-ivenmaneuver was computed by the ACSS. Details of the engine test perform-

ance parameters are given in Reference I.

2.2.2 Final_Alignment Data of the Hi_h-Thrust Engines

Figure 2-2 shows the nominal locations and orientations of the thrust vectors

and FA) of the radial and axial engines. The final prelaunch measured

alignment values, prelaunch numerical data on the attitude control system, and

basic data on the spacecraft mass properties are as follows.

Parameter Value

Azimuth angle of thrust vector from spacecraft

geometric x-axis:

Ax HTE (deg'rees)

Ra HTE (degrees)

P2 (degrees)

P4 (degrees)

Elevation above spin plane:

Ax HTE (degrees)

Ra HTE (degrees)

P2 (degrees)

P4 (degrees)

Apogee boost motor, fuel weight (pounds)

355.275

7.914

0.000

0.000

+ 82. 652

+ i. 203

+ 89. 911

+ 89. 939

686.942

2-5



_b • SPACECRAFT GEOMETRIC CENTERLINE

• POINTS-tOWARD EARTH IN MISSION MODE

• YAW AXiS IN MISSION MODE

• SPIN AXIS IN SS MODE

_b

• POINTS EAST IN MISSION MODE

• ROLL AXIS IN MISSION MODE

CENTERLINE STATION 29.13

Yb

• POINTS SOUTH IN MISSION MODE

• PITCH AXIS IN MISSION MODE

\

I \

---. _ 7° 24'

8a I " FR

/
\

_R - FORCE VECTOR FROM RADIAL HIGH-THRUST ENGINE

_A -- FORCE VECTOR FROM AXIAL HiGH-THRUST ENGINE

"THESE POINTS DO NOT SIGNIFY THE LOCATIONS OF THE ENGINES.

Fi=o%tre 2-2. High-Thrust Engine Force Vector Nominal

Locstions and Directions
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Parameter Value

RCS fuel (hydrazine) weight (pounds) 54. 737

RCS fuel tank pressure at loading (pounds per 354.50

square inch)

RCS fuel tank temperature at loading (deg-rees 72

Fahrenheit)

Total spacecraft weight at lift-off (pounds) 1490. 506

Other prelaunch nominal numerical data is given in Reference i.
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-__j SECTION 3 - POSTLAUNCH ANALYSIS OF ATTITUDE SENSOR DATA

Data from both spinning Sun sensors and both spinning Earth sensors was of

excellent quality. Noise from the Sun sensor data was less than the granularity

of the hardware. Noise for the Earth sensor rotation angle data was typically

of the order of 0.02 degree (as given by Optical Aspect Attitude and Bias

Determination (OABIAS) solutions over large data spans). This noise is attrib-

uted to the granularity of the spacecraft clock (one clock pulse equals approxi-

mately 0. 024 degree).

3.1 SPIN RATE

The spin rate of the spacecraft at constant attitudes remained constant over

large intervals, indicating absence of significant nutation. Fignre 3-1 shows

the spin rate of the spacecraft over a period of 3 hours at injectionattitude. The

observed systematic increase in spin rate in Figure 3-1 is attributed to a sys-

tematic decrease in the encoder clock rate during the data span as discussed in

Section 2.i. 3. The decrease in encoder clock rate during the above-mentioned

data span was confirmed from the measured values at STDN stations. Occa-

sional fluctuations in spin rate between adjacent buckets (Fig-are 3-i) are attrib-

uted to noise and encoder clock g-ranularity (approximately 0. 024 degree at

60 rpm).

3.2 SUN ANGLE DATA

At all times during the mission, the prime spinning Sun sensor provided Sun

angle data that was accurate to within the granularity of this sensor (0.25 de-

gree). No flipping of this angle data between adjacent Sun buckets was observed

(see Figure 3-2). For the short period of time in which the redundant Sun sen-

sor (west) was active, the Sun angle data remained identical to that provided

by the prime spinning Sun sensor. The smooth transition of the Sun angle

between adjacent buckets indicated that nutation of the spacecraft was less than

one-eighth of a degree.

3-1
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3.3 ROTATION AaNGLE DATA FROM SPL'_NING EARTH SENSORS

Although the specification for the units states that they shall meet their specified

accuracies for attitudesbetween 10,000 and 20,000 nautical miles, both spinning

Earth sensors performed adequately throughout all Earth coverage regions for

the transfer orbit. An anomaly shown by both east and west Earth sensors was

the random ficticious indication of a sky-to-Earth boundary crossing when no

Earth coverage was available. This erroneous data was rejected by manually

editing the raw telemetry data arrays. Figure 3-3 shows this effectoccurring

for the west Earth sensor. Figures 3-3 and 3-4 show rotation angle data at first

apogee in the transfer orbit, and Figures 3-5 and 3-6 show similar data in the

drift orbit.

3.3.1 Pagoda Effect

This anomaly (Reference i) affects the behavior of attitude data at small Earth

widths and is due to the electronic response of the infrared bolometer and its

associated electronics. Rotation angle data for apogee 1 (Figures 3-7 and 3-8)

clearly demonstrates that this distortion is present. In these fig-ures solid lines

represent predicted rotation angles as calculated from the determined attitude,

and the symbol "+" represents the observed rotation angle. Using the analytical

results for CTS and previous satellite data (Reference I), all rotation angle data

for Earth widths of less than 12 degrees were arbitrarily rejected. Data for

Earth widths larger than 12 degrees was considered to be unaffected by this

distortion and could be reliably used for attitude determination.

3.3.2 Perigee Data

Perigee data (perigees 6 and 7) for the transfer orbit played an important role

in attitude determination. The wide range of geometrical conditions present

for perigee data make the data very sensitive to the fitting parameters. Con-

sequently the combination of perigee data with an equal section of apogee data

enabled a more accurate attitude determination result to be obtained. Perigee

3-4
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data prior to perigee 6 was present in too small a quantity to allow effective

use to be made of it.

3.4 SENSOR BIASES

3.4.1 Bias Determination

In determining the sensor biases for the CTS mission, prelaunch analysis

(Reference i) had indicated the following conclusions:

• Injection attitudeprovides poor geometry data for accurate bias

determination to be possible.

• Apogee motor firing (A_[F) is the principal attitude for bias deter-

ruination activities prior to AMF.

• For AMF attitude the major problem for bias determination is the

high correlation of sensor mounting angle and Sun angle (caused by

the Sun vector, nadir vector, and attitude being nearly coplanar).

• - For AMF attitude in the drift orbit, a second Earth ellipse exists,

providing a _o-reater variation in the available geometry and, there-

fore, improving the potential for bias determination.

• The best geometry for bias determination on CTS occurs 20 devotees

from orbit normal, because it is here that the largest variation in

the geometrical data is present.

• For the spacecraft at orbit normal, a full program of bias deter-

ruination is no longer possible due to the redundancy of the data.

The general procedure for determining biases for the CTS sensors involved

using prelaunch analysis findings as guidelines; thus, in order to eliminate the

pagoda effect, only data for Earth widths greater than 12 degrees was used in

solving for the biases. For A_IF attitude, because of the correlation between

sensor mounting angle and Sun angle, one of these parameters was "turned off'
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during the bias processing. Similarly, in the drift orbit at orbit normal attitude,

a correlation between sensor mounting angle and Earth sensor triggering biases

necessitated that a member of this pair of biases be turned off. For this geom-

etry a correlation also existed between the sensor azimuth biases andthe in-

track orbit timing error, requiring that one of these parameters (usually the

latter) be turned off.

The subsystem used to determine the biases for the sensor hardware during the

CTS mission was OABL4S. Although OABLAS is capable of operation in both a

differential correction and a recursive mode, only the former mode was used

because prelaunch analysis had indicated that this mode was least sensitive to

a priori values of the state vector parameters. The capability of the new

OABIAS system to constrain the horizon-in value to be equal to the horizon-out

value for both the azimuth-level and triggering-level biases was used ex-ten-

sively. The quality of the OABIAS solution was checked by using plots of re-

siduals from the OABIAS subsystem (Fi_o_re 3-9) and plots of predicted data

versus observed data from the PLOTOC subsystem (Fi_o-ure 3-10).

Figure 3-9 shows an example of the residual for the midscan dihedral model

solution for the east Earth sensor for CTS mission data. The residual plot

represents the difference bet_veen the observed Earth midscan angle and the

predicted midscan angle for each frame of data processed, and itis the square

of this quantity which the OABIAS system is attempting to minimize for each

iteration. This particular plot indicates evidence of a systematic error which

increases towards the end of the data pass. Sources of this error could be poor

geometry, pagoda effect, or certain biases being "turned off" for this processing

ri/12.

In Fi_c_ure3-10 the fullellipse of "+" si_cmsare the observed rotation angles for

the west Earth sensor where the lower curve represents the horizon-in and the

upper curve the horizon-out rotation angles. The partial ellipse of "+" sigTiS
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are the observed rotation angles for the east Earth sensor which were not proc-

essed for this run. The pair of solid lines labeled "5" denote the predicted

rotation angles using the spinning sensor biases determined by the OABIAS

subsystem. The pair of solid lines labeled "6" were calculated using the final

prelaunch measured alignment data for the spinning attitude sensors (see Sec-

tion 2). The OABIAS solution (curve 5) clearly _ves an excellent fit to the data.

3.4.2 Summary of Sensor Biases

The history of the spinning attitude sensor biases as determined for CTS are

given in Table 3-1. All biases were small and within the specified accuracy

of the alig'nment data for the sensors and the -known unmodeled errors (pagoda

effect, Earth oblateness, Earth atmospheric height, orbit errors).
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_.; SECTION 4 - ATTITUDE RESULTS

A number of discrete phases may be distinguished for the CTS mission when the

spacecraft was not being maneuvered. During these periods large spans of data

were collected while the spacecraft's spin axis vector remained nearly invariant

in the geocentric inertial coordinate system. These phases were as follows:

o Transfer orbit

Injection attitude

System verification attitude

- Apogee motor firing attitude (prior to trim)

- Apogee motor firing attitude (.following trim)

• Drift orbit

- Post-apogee motor firing attitude

- Drift orbit normal attitude (prior to first orbit maneuver)

- Drift orbit norms/ attitude (prior to second orbit maneuver)

- Drift orbit normal attitude (prior to third orbit maneuver)

- Drift orbit normal attitude (prior to fourth orbit maneuver)

- Drift orbit normal attitude (prior to fifth(fins/)orbit maneuver)

- Drift orbit normal attitude (afterfifth(final)orbit maneuver)

The attitudehistory and corresponding orbit information for these discrete

phases are listedin Table 4-1 and Table 4-2, respectively. Successive orbit

trim maneuvers following the second orbit maneuver had littleeffect on the

spacecraft's attitude.

An upper limit on the arc-length uncertainty for the attitude results for CTS

was conservatively fixed at 0.5 degree. This value was supported by arc-

length uncertainty results determined by the Optical Aspect Attitude Determina-

tion System (OASYS) (using a priori s/ig-nment data) and by the sensor biases

determined by OABIAS being no larger than approximately one-third degree.
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.

-_j Low residuals (0.15 deg-ree) from OABIAS also indicated that the observed data

had been satisfactorily modeled.
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SECTION 5 - CONTROL SYSTEm{ PERFOR_LANCE

The Ax HTE was used to perform all attitude reorientations, and it performed

well. Through the effective use of the control monitor subsystem, all attitude

reorientation maneuvers were completed within 1 degree of the desired attitude;

as a result, only a 1-degree trim maneuver was needed prior to A_IF, and no

trim maneuver was required to achieve DONA. In the subsections which follow,

each attitude maneuver will be discussed briefly.

In all the plots presented in this section, the solid line represents the predicted

variation during the attitude maneuver as computed by the CTS maneuver con-

trol program (CTSNIAN), and the symbol "+" represents the observed value

during the actual maneuver.

5.1 INJECTION ATTITLrDE (INJA) TO SYSTEM VERIFICATION ATTITUDE (SVA)

Fig-ures 5-1 and 5-2 show the observed maneuver from INJA to SVA. The

predicted plot is for the full maneuver from INJA to AMFA. The first short

seg-ment of the predicted plot is for INJA to SVA and was computed for a firing

of 90 pulses of the A_x HTE. In the actual maneuver, 93 pulses were fired;

therefore, the observed trajectory extends beyond the predicted trajectory.

Otherwise, the observed maneuver was very close to the predicted trajectory.

5.2 SVA TO AMFA

The maneuver from SVA to ANiFA was planned to be performed in two seg-ments

in order to have the spinning Earth sensor coverage available throughout the

maneuver. In Figures 5-3 through 5-11, the shorter segment of the predicted

maneuver is from SVA to an intermediate atlitude (INTA), and the longer seg-

ment is from INTA to AMFA.

5.2.1 SVA toINTA

Figures 5-3 through 5-5 show the observed maneuver from SVA to INTA. The

observed trajectory is slightly off the predicted trajectory. The firing angle
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error computed by the control monitor is approximately +I. 5 degrees. For

this seg-ment, 690 pulses of the Ax HTE were fired. The total rhumb line arc

leng-thtraveled is about 8 pereent smaller than that predicted. In Figure 5-5, it

is seen that the observed spin rates are very close to the predicted values. The

slightly larger observed spin rate at INTA is attributed to the fact that the total

rhumb line arc leng_h traveled is about 8 percent shorter than that predicted.

5.2.2 INTA to AMFA

Fig-ures 5-6 through 5-11 show the progress of observed maneuver from INTA

to AMFA. The maneuver from INTA to AMFA was stopped four times when

nearing AMFA, and the firing angle was changed twice in order to achieve

AMFA closely. Figure 5-6 shows the observed maneuver up to the first stop

after INTA. From INTA to the first stop, 775 pulses of the Ax HTE were fired.

The firing angle was changed at the first stop. Figure 5-7 includes the observed

maneuver from the first stop to the third Stbp. In this segment a total of

186 pulses of the Ax HTE were fired in 2 groups of 93 with a short pause at

the second stop. The firing angle was changed a second time at the third stop.

Figure 5-8 includes the observed maneuver from the third stop to AMFA. In

this se=o-ment 62 pulses of the Ax HTE were fired in 2 g-roups of 31 with a short

pause at the fourth stop.

Fig'ures 5-9 and 5-10 show the variation of the Sun angle and the spin rate,

respectively, for the full maneuver. In these plots discontinuities followed by

lines of constant Sun angle or spin rate indicate stops. Figure 5-11 is the plot

of right ascension versus declination for the full maneuver. A total of 1023

pulses of the Ax HTE were fired for the maneuver from INTA to AMFA.

5.3 TRIM MANEUVER TO AMFA

The accurate attitude determination using a long data span after maneuver to

A MFA showed that the attitude achieved was 1 degree short of the desired
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v

A_IFA. Therefore, a trim maneuver to AMFA by firing 12 pulses of the Ax HTE

was performed, and the required AMTA was achieved.

5.4 AMFA TO DONA

Fi_o-ures 5-12 through 5-15 show the progress of observed maneuver from

ANIFA to DONA. This maneuver was intitiated without the spinning Earth

sensor coverage, and therefore initially the Sun angle variation (Fibre 5-12)

was used to monitor the maneuver. About halfway through the maneuver, the

Earth was picked up by the SES-W, and it was observed (Fi_o-ure 5-13) that the

maneuver was _oin_ slightly off the planned trajectory. It was decided to con-

tinue the maneuver until the attitude fell on the second predicted se_oTnent. This

was achieved (Fi_ure 5-14) after 434 pulses of the Ax HTE had been fired. At

this point the firing angle was changed, and 62 pulses of the .%K HTE were fired.

It was observed that the maneuver was slightly off the planned trajectory (Fig-

ure 5-i5); therefore the firing angle was changed a second time, 21 more

pulses of the Ax HTE were fired, and DONA (Fi_ure 5-15) was achieved. Ac-

curate attitude determination using a long data span showed that the attitude

achieved was within 1 degree of the DONA, and therefore a trim maneuver was

not needed.

5.5 SUMM.ARY OF ATTITUDE CONTROL SYSTEM PERFOR_IANCE

Table 5-I presents a history of commands executed for the attitude maneuvers

and the attitudes achieved at the end of the maneuvers. The observed torque

per pulse of the Ax HTE was approximately 8 percent lower than that predicted,

and the observed rhurnb angles of maneuvers were approximately I. 5 degrees

larger than those predicted. After termination of the maneuvers, the spin rate

and the Sun angle were observed to be fluctuating for a few minutes. The ampli-

bide of fluctuation was small; it is attributed to small nutation induced due to

attitude maneuvers and is consistent with the prelaunch analysis. The stabiliza-

tion of the spin rate and the Sun angle in a few minutes indicates that the passive

nutation damper was performing well.
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SECTION 6 - CONCLUSIONS

The major conclusions of the observations and analysis during and after the

launch are summarized as follows:

• Spinning attitude sensors performed well. Alignment was good;

as a result, only small biases were observed.

• The available perigee data was utilized effectively; as a result,

the AMFA was determined to high precision, and e_remely close

agreement between the desired and observed driftorbit after the

apogee motor firing was realized.

• The Ax HTE performed well. Alignment was good; as a result,

the observed spin rate variation during attitude maneuvers was

very close to the predicted variation.

• Errors in the Ax HTE calibration data were small. The observed

rhumb angles of attitude maneuvers were approximately i.5 de-

grees larger than predictions, and the observed precession per

pulse was approximately 8 percent smaller than thatpredicted.

• Throughout all the attitude maneuvers, the spacecraft was kept

within all the constraints and did not overshoot the target attitude.

All attitude maneuvers were completed within 1 degree of the de-

sired attitude.

• The attitude support software performed flawlessly throughout the

mission.

• All of the attitude determination and control support requirements

were satisfied throughout the National Aeronautics and Space

Administration (NASA) phase of the mission.

T
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